Generated August 23, 2022
# Welcome to the Narrative
from IPython.display import IFrame
IFrame("https://www.kbase.us/narrative-welcome-cell/", width="100%", height="300px")
Out[1]:
from biokbase.narrative.jobs.appmanager import AppManager
AppManager().run_app_bulk(
    [{
        "app_id": "kb_uploadmethods/import_fastq_noninterleaved_as_reads_from_staging",
        "tag": "release",
        "version": "31e93066beb421a51b9c8e44b1201aa93aea0b4e",
        "params": [{
            "fastq_fwd_staging_file_name": "112_S45_R1_001.fastq.gz",
            "fastq_rev_staging_file_name": "112_S45_R2_001.fastq.gz",
            "name": "Unknown_112_pairedreads",
            "sequencing_tech": "Illumina",
            "single_genome": 1,
            "read_orientation_outward": 0,
            "insert_size_std_dev": None,
            "insert_size_mean": None
        }]
    }],
    cell_id="09e16705-d8e9-42e9-8876-cc8df04b104b",
    run_id="af79ed74-fb54-49ce-b1f3-56c5590dc36b"
)
A quality control application for high throughput sequence data.
This app completed without errors in 3m 30s.
Links
Files
These are only available in the live Narrative: https://narrative.kbase.us/narrative/110408
  • Unknown_112_pairedreads_110408_2_1.fwd_fastqc.zip - Zip file generated by fastqc that contains original images seen in the report
  • Unknown_112_pairedreads_110408_2_1.rev_fastqc.zip - Zip file generated by fastqc that contains original images seen in the report
Trim paired- or single-end Illumina reads with Trimmomatic.
This app completed without errors in 13m 52s.
Objects
Created Object Name Type Description
Unknown112_trimmed_paired PairedEndLibrary Trimmed Reads
Unknown112_trimmed_unpaired_fwd SingleEndLibrary Trimmed Unpaired Forward Reads
Unknown112_trimmed_unpaired_rev SingleEndLibrary Trimmed Unpaired Reverse Reads
v1 - KBaseFile.PairedEndLibrary-2.1
The viewer for the data in this Cell is available at the original Narrative here: https://narrative.kbase.us/narrative/110408
Assemble reads using the SPAdes assembler.
This app completed without errors in 20m 19s.
Objects
Created Object Name Type Description
Unknown112_trimmedSPAdesAssembly Assembly Assembled contigs
Summary
Assembly saved to: h09gall:narrative_1646161435916/Unknown112_trimmedSPAdesAssembly Assembled into 54 contigs. Avg Length: 98755.07407407407 bp. Contig Length Distribution (# of contigs -- min to max basepairs): 29 -- 546.0 to 50091.2 bp 7 -- 50091.2 to 99636.4 bp 3 -- 99636.4 to 149181.59999999998 bp 4 -- 149181.59999999998 to 198726.8 bp 4 -- 198726.8 to 248272.0 bp 2 -- 248272.0 to 297817.19999999995 bp 0 -- 297817.19999999995 to 347362.39999999997 bp 4 -- 347362.39999999997 to 396907.6 bp 0 -- 396907.6 to 446452.8 bp 1 -- 446452.8 to 495998.0 bp
Links
Obtain objective taxonomic assignments for bacterial and archaeal genomes based on the Genome Taxonomy Database (GTDB) ver R06-RS202
This app completed without errors in 34m 56s.
Links
v1 - KBaseGenomeAnnotations.Assembly-5.0
The viewer for the data in this Cell is available at the original Narrative here: https://narrative.kbase.us/narrative/110408
Annotate Assembly and Re-annotate Genomes with Prokka annotation pipeline.
This app completed without errors in 4m 22s.
Objects
Created Object Name Type Description
Unknown112_Prokka Genome Annotated Genome
Summary
Annotated Genome saved to: h09gall:narrative_1646161435916/Unknown112_Prokka Number of genes predicted: 5193 Number of protein coding genes: 5127 Number of genes with non-hypothetical function: 3135 Number of genes with EC-number: 1267 Number of genes with Seed Subsystem Ontology: 0 Average protein length: 279 aa.
Output from Annotate Assembly and Re-annotate Genomes with Prokka - v1.14.5
The viewer for the output created by this App is available at the original Narrative here: https://narrative.kbase.us/narrative/110408
Allows users to create a GenomeSet object.
This app completed without errors in 44s.
Objects
Created Object Name Type Description
Unknown112_ProkkaGenomeSet GenomeSet KButil_Build_GenomeSet
Summary
genomes in output set Unknown112_ProkkaGenomeSet: 1
Annotate your genome(s) with DRAM. Annotations will then be distilled to create an interactive functional summary per genome.
This app completed without errors in 41m 47s.
Summary
Here are the results from your DRAM run.
Links
Files
These are only available in the live Narrative: https://narrative.kbase.us/narrative/110408
  • annotations.tsv - DRAM annotations in a tab separate table format
  • genes.faa - Genes as amino acids predicted by DRAM with brief annotations
  • product.tsv - DRAM product in tabular format
  • metabolism_summary.xlsx - DRAM metabolism summary tables
  • genome_stats.tsv - DRAM genome statistics table
Annotate or re-annotate genome/assembly using RASTtk (Rapid Annotations using Subsystems Technology toolkit).
This app completed without errors in 12m 41s.
Objects
Created Object Name Type Description
Unknown112_RASTtk Genome RAST re-annotated genome
Summary
The RAST algorithm was applied to annotating a genome sequence comprised of 54 contigs containing 5332774 nucleotides. No initial gene calls were provided. Standard gene features were called using: prodigal; glimmer3. A scan was conducted for the following additional feature types: rRNA; tRNA; selenoproteins; pyrrolysoproteins; repeat regions; crispr. The genome features were functionally annotated using the following algorithm(s): Kmers V2; Kmers V1; protein similarity. In addition to the remaining original 0 coding features and 0 non-coding features, 6046 new features were called, of which 295 are non-coding. Output genome has the following feature types: Coding gene 5751 Non-coding prophage 1 Non-coding repeat 229 Non-coding rna 65 Overall, the genes have 2911 distinct functions The genes include 2116 genes with a SEED annotation ontology across 1397 distinct SEED functions. The number of distinct functions can exceed the number of genes because some genes have multiple functions.
Links
Construct a draft metabolic model based on an annotated genome.
This app completed without errors in 2m 25s.
Objects
Created Object Name Type Description
112_metabolic_model FBAModel FBAModel-14 112_metabolic_model
112_metabolic_model.gf.1 FBA FBA-13 112_metabolic_model.gf.1
Report
Summary
RefGlucoseMinimal media.
v1 - KBaseFBA.FBA-13.2
The viewer for the data in this Cell is available at the original Narrative here: https://narrative.kbase.us/narrative/110408
v1 - KBaseFBA.FBAModel-14.0
The viewer for the data in this Cell is available at the original Narrative here: https://narrative.kbase.us/narrative/110408
Output from Build Metabolic Model
The viewer for the output created by this App is available at the original Narrative here: https://narrative.kbase.us/narrative/110408
Construct a draft metabolic model based on an annotated genome.
This app completed without errors in 2m 9s.
Objects
Created Object Name Type Description
112_metabolic_model_prokka FBAModel FBAModel-14 112_metabolic_model_prokka
112_metabolic_model_prokka.gf.1 FBA FBA-13 112_metabolic_model_prokka.gf.1
Report
Summary
RefGlucoseMinimal media.
Output from Build Metabolic Model
The viewer for the output created by this App is available at the original Narrative here: https://narrative.kbase.us/narrative/110408

Apps

  1. Annotate and Distill Genomes with DRAM
    • DRAM source code
    • DRAM documentation
    • DRAM publication
  2. Annotate Assembly and Re-annotate Genomes with Prokka - v1.14.5
    • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30: 2068 2069. doi:10.1093/bioinformatics/btu153
  3. Annotate Genome/Assembly with RASTtk - v1.073
    • [1] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9: 75. doi:10.1186/1471-2164-9-75
    • [2] Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42: D206 D214. doi:10.1093/nar/gkt1226
    • [3] Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5. doi:10.1038/srep08365
    • [4] Kent WJ. BLAT The BLAST-Like Alignment Tool. Genome Res. 2002;12: 656 664. doi:10.1101/gr.229202
    • [5] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389-3402. doi:10.1093/nar/25.17.3389
    • [6] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25: 955 964.
    • [7] Cobucci-Ponzano B, Rossi M, Moracci M. Translational recoding in archaea. Extremophiles. 2012;16: 793 803. doi:10.1007/s00792-012-0482-8
    • [8] Meyer F, Overbeek R, Rodriguez A. FIGfams: yet another set of protein families. Nucleic Acids Res. 2009;37 6643-54. doi:10.1093/nar/gkp698.
    • [9] van Belkum A, Sluijuter M, de Groot R, Verbrugh H, Hermans PW. Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol. 1996;34: 1176 1179.
    • [10] Croucher NJ, Vernikos GS, Parkhill J, Bentley SD. Identification, variation and transcription of pneumococcal repeat sequences. BMC Genomics. 2011;12: 120. doi:10.1186/1471-2164-12-120
    • [11] Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11: 119. doi:10.1186/1471-2105-11-119
    • [12] Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23: 673 679. doi:10.1093/bioinformatics/btm009
    • [13] Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012;40: e126. doi:10.1093/nar/gks406
  4. Assemble Reads with SPAdes - v3.15.3
    • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology. 2012;19: 455-477. doi: 10.1089/cmb.2012.0021
    • Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics. 2020 Jun;70(1):e102. doi: 10.1002/cpbi.102.
  5. Assess Read Quality with FastQC - v0.11.9
    • FastQC source: Bioinformatics Group at the Babraham Institute, UK.
  6. Build GenomeSet - v1.7.6
    • Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018;36: 566. doi: 10.1038/nbt.4163
  7. Build Metabolic Model
    • [1] Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28: 977 982. doi:10.1038/nbt.1672
    • [2] Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42: D206 D214. doi:10.1093/nar/gkt1226
    • [3] Latendresse M. Efficiently gap-filling reaction networks. BMC Bioinformatics. 2014;15: 225. doi:10.1186/1471-2105-15-225
    • [4] Dreyfuss JM, Zucker JD, Hood HM, Ocasio LR, Sachs MS, Galagan JE. Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM. PLOS Computational Biology. 2013;9: e1003126. doi:10.1371/journal.pcbi.1003126
    • [5] Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003;5: 264 276.
  8. Classify Microbes with GTDB-Tk - v1.7.0
    • Pierre-Alain Chaumeil, Aaron J Mussig, Philip Hugenholtz, Donovan H Parks, GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinformatics, Volume 36, Issue 6, 15 March 2020, Pages 1925 1927. DOI: https://doi.org/10.1093/bioinformatics/btz848
    • Parks, D., Chuvochina, M., Waite, D. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36, 996 1004 (2018). DOI: https://doi.org/10.1038/nbt.4229
    • Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;10.1038/s41587-020-0501-8. DOI:10.1038/s41587-020-0501-8
    • Rinke C, Chuvochina M, Mussig AJ, Chaumeil PA, Dav n AA, Waite DW, Whitman WB, Parks DH, and Hugenholtz P. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021 Jul;6(7):946-959. DOI:10.1038/s41564-021-00918-8
    • Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538. Published 2010 Oct 30. doi:10.1186/1471-2105-11-538
    • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114. Published 2018 Nov 30. DOI:10.1038/s41467-018-07641-9
    • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. Published 2010 Mar 8. DOI:10.1186/1471-2105-11-119
    • Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. Published 2010 Mar 10. DOI:10.1371/journal.pone.0009490 link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835736/
    • Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7(10):e1002195. DOI:10.1371/journal.pcbi.1002195
  9. Trim Reads with Trimmomatic - v0.36
    • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114 2120. doi:10.1093/bioinformatics/btu170