Generated August 23, 2022
# Welcome to the Narrative
from IPython.display import IFrame
IFrame("https://www.kbase.us/narrative-welcome-cell/", width="100%", height="300px")
Out[1]:
from biokbase.narrative.jobs.appmanager import AppManager
AppManager().run_app_bulk(
    [{
        "app_id": "kb_uploadmethods/import_fastq_noninterleaved_as_reads_from_staging",
        "tag": "release",
        "version": "31e93066beb421a51b9c8e44b1201aa93aea0b4e",
        "params": [{
            "fastq_fwd_staging_file_name": "511430436_116_S47_R1_001.fastq.gz",
            "fastq_rev_staging_file_name": "-1160871831_116_S47_R2_001.fastq.gz",
            "name": "Unknown_116",
            "sequencing_tech": "Illumina",
            "single_genome": 1,
            "read_orientation_outward": 0,
            "insert_size_std_dev": None,
            "insert_size_mean": None
        }]
    }],
    cell_id="66f421a8-56bc-4985-af8f-71aea8f63062",
    run_id="03758177-7a8c-44e5-a584-6b89b03e584c"
)
A quality control application for high throughput sequence data.
This app completed without errors in 2m 52s.
Links
Files
These are only available in the live Narrative: https://narrative.kbase.us/narrative/110414
  • Unknown_116_110414_2_1.fwd_fastqc.zip - Zip file generated by fastqc that contains original images seen in the report
  • Unknown_116_110414_2_1.rev_fastqc.zip - Zip file generated by fastqc that contains original images seen in the report
Trim paired- or single-end Illumina reads with Trimmomatic.
This app completed without errors in 6m 38s.
Objects
Created Object Name Type Description
Unknown_116_trimmed_paired PairedEndLibrary Trimmed Reads
Unknown_116_trimmed_unpaired_fwd SingleEndLibrary Trimmed Unpaired Forward Reads
Unknown_116_trimmed_unpaired_rev SingleEndLibrary Trimmed Unpaired Reverse Reads
Assemble reads using the SPAdes assembler.
This app completed without errors in 21m 5s.
Objects
Created Object Name Type Description
SPAdes.assembly_116 Assembly Assembled contigs
Summary
Assembly saved to: rj17thib:narrative_1646162135653/SPAdes.assembly_116 Assembled into 22 contigs. Avg Length: 247455.27272727274 bp. Contig Length Distribution (# of contigs -- min to max basepairs): 16 -- 692.0 to 273573.6 bp 4 -- 273573.6 to 546455.2 bp 1 -- 546455.2 to 819336.7999999999 bp 0 -- 819336.7999999999 to 1092218.4 bp 0 -- 1092218.4 to 1365100.0 bp 0 -- 1365100.0 to 1637981.5999999999 bp 0 -- 1637981.5999999999 to 1910863.1999999997 bp 0 -- 1910863.1999999997 to 2183744.8 bp 0 -- 2183744.8 to 2456626.4 bp 1 -- 2456626.4 to 2729508.0 bp
Links
Annotate Assembly and Re-annotate Genomes with Prokka annotation pipeline.
This app completed without errors in 4m 58s.
Objects
Created Object Name Type Description
Annotate_UK_116 Genome Annotated Genome
Summary
Annotated Genome saved to: rj17thib:narrative_1646162135653/Annotate_UK_116 Number of genes predicted: 4852 Number of protein coding genes: 4809 Number of genes with non-hypothetical function: 2550 Number of genes with EC-number: 1057 Number of genes with Seed Subsystem Ontology: 0 Average protein length: 321 aa.
Annotate or re-annotate genome/assembly using RASTtk (Rapid Annotations using Subsystems Technology toolkit).
This app completed without errors in 13m 16s.
Objects
Created Object Name Type Description
Raskt_Annotate_UK116 Genome RAST re-annotated genome
Summary
The RAST algorithm was applied to annotating a genome sequence comprised of 22 contigs containing 5444016 nucleotides. No initial gene calls were provided. Standard gene features were called using: prodigal; glimmer3. A scan was conducted for the following additional feature types: rRNA; tRNA; selenoproteins; pyrrolysoproteins; repeat regions; crispr. The genome features were functionally annotated using the following algorithm(s): Kmers V2; Kmers V1; protein similarity. In addition to the remaining original 0 coding features and 0 non-coding features, 5196 new features were called, of which 173 are non-coding. Output genome has the following feature types: Coding gene 5023 Non-coding crispr_array 3 Non-coding crispr_repeat 52 Non-coding crispr_spacer 49 Non-coding prophage 5 Non-coding repeat 21 Non-coding rna 43 Overall, the genes have 2317 distinct functions The genes include 2002 genes with a SEED annotation ontology across 1192 distinct SEED functions. The number of distinct functions can exceed the number of genes because some genes have multiple functions.
Links
Obtain objective taxonomic assignments for bacterial and archaeal genomes based on the Genome Taxonomy Database (GTDB) ver R06-RS202
This app completed without errors in 35m 17s.
Links
Allows users to create a GenomeSet object.
This app completed without errors in 34s.
Objects
Created Object Name Type Description
prokka_annotate_UK_116 GenomeSet KButil_Build_GenomeSet
Summary
genomes in output set prokka_annotate_UK_116: 1
Annotate your genome(s) with DRAM. Annotations will then be distilled to create an interactive functional summary per genome.
This app completed without errors in 46m 48s.
Summary
Here are the results from your DRAM run.
Links
Files
These are only available in the live Narrative: https://narrative.kbase.us/narrative/110414
  • annotations.tsv - DRAM annotations in a tab separate table format
  • genes.faa - Genes as amino acids predicted by DRAM with brief annotations
  • product.tsv - DRAM product in tabular format
  • metabolism_summary.xlsx - DRAM metabolism summary tables
  • genome_stats.tsv - DRAM genome statistics table

Apps

  1. Annotate and Distill Genomes with DRAM
    • DRAM source code
    • DRAM documentation
    • DRAM publication
  2. Annotate Assembly and Re-annotate Genomes with Prokka - v1.14.5
    • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30: 2068 2069. doi:10.1093/bioinformatics/btu153
  3. Annotate Genome/Assembly with RASTtk - v1.073
    • [1] Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics. 2008;9: 75. doi:10.1186/1471-2164-9-75
    • [2] Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42: D206 D214. doi:10.1093/nar/gkt1226
    • [3] Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5. doi:10.1038/srep08365
    • [4] Kent WJ. BLAT The BLAST-Like Alignment Tool. Genome Res. 2002;12: 656 664. doi:10.1101/gr.229202
    • [5] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25: 3389-3402. doi:10.1093/nar/25.17.3389
    • [6] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25: 955 964.
    • [7] Cobucci-Ponzano B, Rossi M, Moracci M. Translational recoding in archaea. Extremophiles. 2012;16: 793 803. doi:10.1007/s00792-012-0482-8
    • [8] Meyer F, Overbeek R, Rodriguez A. FIGfams: yet another set of protein families. Nucleic Acids Res. 2009;37 6643-54. doi:10.1093/nar/gkp698.
    • [9] van Belkum A, Sluijuter M, de Groot R, Verbrugh H, Hermans PW. Novel BOX repeat PCR assay for high-resolution typing of Streptococcus pneumoniae strains. J Clin Microbiol. 1996;34: 1176 1179.
    • [10] Croucher NJ, Vernikos GS, Parkhill J, Bentley SD. Identification, variation and transcription of pneumococcal repeat sequences. BMC Genomics. 2011;12: 120. doi:10.1186/1471-2164-12-120
    • [11] Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11: 119. doi:10.1186/1471-2105-11-119
    • [12] Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007;23: 673 679. doi:10.1093/bioinformatics/btm009
    • [13] Akhter S, Aziz RK, Edwards RA. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that combines similarity- and composition-based strategies. Nucleic Acids Res. 2012;40: e126. doi:10.1093/nar/gks406
  4. Assemble Reads with SPAdes - v3.15.3
    • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology. 2012;19: 455-477. doi: 10.1089/cmb.2012.0021
    • Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes De Novo Assembler. Curr Protoc Bioinformatics. 2020 Jun;70(1):e102. doi: 10.1002/cpbi.102.
  5. Assess Read Quality with FastQC - v0.11.9
    • FastQC source: Bioinformatics Group at the Babraham Institute, UK.
  6. Build GenomeSet - v1.7.6
    • Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology. 2018;36: 566. doi: 10.1038/nbt.4163
  7. Classify Microbes with GTDB-Tk - v1.7.0
    • Pierre-Alain Chaumeil, Aaron J Mussig, Philip Hugenholtz, Donovan H Parks, GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinformatics, Volume 36, Issue 6, 15 March 2020, Pages 1925 1927. DOI: https://doi.org/10.1093/bioinformatics/btz848
    • Parks, D., Chuvochina, M., Waite, D. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36, 996 1004 (2018). DOI: https://doi.org/10.1038/nbt.4229
    • Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;10.1038/s41587-020-0501-8. DOI:10.1038/s41587-020-0501-8
    • Rinke C, Chuvochina M, Mussig AJ, Chaumeil PA, Dav n AA, Waite DW, Whitman WB, Parks DH, and Hugenholtz P. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021 Jul;6(7):946-959. DOI:10.1038/s41564-021-00918-8
    • Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics. 2010;11:538. Published 2010 Oct 30. doi:10.1186/1471-2105-11-538
    • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9(1):5114. Published 2018 Nov 30. DOI:10.1038/s41467-018-07641-9
    • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119. Published 2010 Mar 8. DOI:10.1186/1471-2105-11-119
    • Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. Published 2010 Mar 10. DOI:10.1371/journal.pone.0009490 link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2835736/
    • Eddy SR. Accelerated Profile HMM Searches. PLoS Comput Biol. 2011;7(10):e1002195. DOI:10.1371/journal.pcbi.1002195
  8. Trim Reads with Trimmomatic - v0.36
    • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30: 2114 2120. doi:10.1093/bioinformatics/btu170